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Why use Preceramic 
Polymers?

• Traditional ceramic processing methods (Powder) are 
shape-limiting and not amenable to CMC fabrication

• Tough, non-crystalline ceramic compositions are 
possible

• Homogeneous, nanoscale ceramic compositions can be 
achieve that demonstrate ultra-high temperature 
durability



Birth (Synthesis)



Synthesis of Most Commonly Used Silicon-Based 
Preceramic Polymers



Preceramic Polymer 
Requirements

• Sufficiently HIGH MOLECULAR WEIGHT –
minimizes volatilization during pyrolysis (2,000 –
10,000 daltons)

• Polymeric structure containing CAGES or RINGS –
minimizes volatilization during pyrolysis

• Suitable RHEOLOGICAL PROPERTIES and 
SOLUBILITY (for solid polymers) – to enable 
shaping processes



Preceramic Polymer 
Requirements (cont.)

• LATENT REACTIVITY – to enable thermoset or cure 
prior to pyrolysis

• For CMC Fabrication, SOLVENTLESS LIQUID 
PRECURSORS are desirable – to enable Polymer 
Infiltration Pyrolysis processing

• For NON-OXIDE ceramics, all but the most exotic 
preceramic polymers are SILICON-BASED



Utility of Ceramics Derived from 
Si-Based Preceramic Polymers

Ceramic Compositions General Applications

• SiOC Cost-Sensitive and Moderate Temperature  Applications

• SiCN, SiC High Temperature Applications



DEATH (Pyrolysis)



For Example: POLYSILAZANES



TGA Curve for Polysilazane Polymer

1. Oligomers – 2.447% Mass Loss
2. Ammonia – 3.757% Mass Loss
3. Ceramization (Methane and 

Hydrogen) – 10.22% Mass Loss



Polysilazane Evolved Gases During 
Pyrolysis
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Influence of Pyrolysis Atmosphere on High Temperature 
(1500 °C) SiCN Crystallization

Pyrolysis Atmosphere Composition Crystalline Phases

Argon SiC b-SiC

Nitrogen SiC/Si3N4 a-Si3N4
b-Si3N4

Ammonia Si3N4 a-Si3N4
b-Si3N4

Air SiCxNyOz/SiO2 a-SiO2
a-Si3N4







Comparative Properties of SiCN, SiC, 
and Si3N4 Ceramics

Property SiCN SiC Si3N4

Density (g/cm^3) 2.35 3.17 3.19

E modulus (Gpa) 80-225 405 314

Poisson’s ratio 0.17 0.14 0.24

CTE (X10^6/K) ~3 3.8 2.5

Hardness (Gpa) 25 30 28

Strength (Mpa) 500-1200 418 700

Toughness (Mpa
m^1/2)

3.5 4-6 5-8

Thermal Shock FOM* 1100-5000 270 890



Transfiguration (Part 
Manufacture)



Ceramic Part Fabrication from 
Preceramic Polymers

• Ceramic Monoliths can be produced by “Warm Pressing” Techniques

• CMCs can be produced by Vacuum Bag, Resin Transfer Molding, and Polymer Infiltration 
Pyrolysis (PIP) using liquid compositions

-Solid Polymer in Solvent
-Solventless Liquid Polymer

• Applications include: aerospace, automotive, missiles, military, electronics, etc.



Ceramic Monolith Fabrication Powder 
“Warm Pressing” Technique
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Ceramic Monolith Fabrication 
Powder “Warm Pressing” Technique



Ceramic Matrix Composite 
(CMC) Fabrication

• Typically made by Polymer Infilitration Pyrolysis (PIP)

• Infusion of Liquid Preceramic Polymer into continuous fiber preform

• Polymer cure followed by Pyrolysis to Ceramic

• Process is repeated until desired Matrix Density is achieved (typically 6-10 cycles)



Current Ceramic Applications

a. Ceramic Matrix Composites (CMCs)

b.Ceramic MEMS (Microelectromechanical Systems)

c. Ceramic Coatings



a.Ceramic Matrix Composites (CMCs)



SiOC CMC Applications

• Diesel Particulate Filters
• VOC Remediation/Incineration
• Environmental Monitoring Filters (EPA)
• Structural Insulation for Industrial Processing
• Commercial Airframe Structural Materials
• Radiant Burners



SiCN and SiC CMC Applications

• Aircraft Engine Components
-Defense
-Commercial Aerospace
• Aircraft & Automotive Brakes
• Stationary Gas Turbines
-Commercial Power Generation
• Semiconductor Processing
-Fixtures & Heating Elements



Polymer Infiltration and Pyrolysis 
(PIP) Process



Properties of S200 CMC



b. Ceramic MEMS



Polysilazane Derived MEMS

• High temperature SiCN ceramic devices
• Easy, low cast fabrication
• Microcasting, Photopolymerization, etc.
• Uses include sensors for gas turbine engines, 

micro-mirrors for lasers, micro-machines, 
actuators, etc.



Fabrication of SiCN MEMS
by Photo-polymerization of Polysilazane

• Fewer processing steps
• Obtain free-standing 

polymer structures for 
crosslinking

• Thin, membrane-like 
layers can be made

L. A. Liew, et al, "Fabrication of Multi-Layered SiCN Ceramic MEMS Using Photo-Polymerization of Precursor," Proceedings of
the 2001 IEEE International Conference on Microelectromechanical Systems, Interlaken, Switzerland, January 21-25, 2001



SiCN MEMS Devices Fabricated
with Polysilazane

(a) Schematic and (b) fabricated electrostatic actuator

(a) Schematic and (b) SEM pressure sensor



SiCN Microigniter Fabricated
with Polysilazane

SiCN Microigniter (“off” & “on” modes) fabricated from
a Polysilazane at the University of Colorado, Boulder, 
Research Laboratories of Prof. Rishi Raj

Electrical 
Probes

~1.2mm



c. Ceramic Coatings on Metals



Brass Coupon Coated with Polysilazane Clear Coat 
(0.1 mil thick PSZ coating on ½ of Brass Coupon)



Pigmented High Temperature Ceramic
Coatings from Polysilazanes

• Electro-Sprayable

• No Delamination from Metal substrates

• Thermal & Corrosion Resistant to 1,000 oC

• Can be Pigmented / “Signature Color”

• Uses include engines, exhaust components, heat exchangers, etc.



Exhaust System and Engine Coatings

• Provide thermal protection
against high temperature 
oxidation

• Provide thermal 
insulation

• Stable in extreme high
temperatures (900 oC)

• Non-Fouling
• Increase horsepower



Basic Formulation

Material % by weight

KDT HTT 1800 26.0

Xylenes 6.9

Zirconium Ocide (0.7 micron) 62.0

Boron Carbide (0.5) 4.6

Dicumyl Peroxide (cure catalyst) 0.5

Total 100%

Exhaust Manifold Coating
(Based on KDT HTT 1800 Polysilazane)



Dry Film Lubricant Coatings 

Reduces friction Reduces heat 

build-up Boosts performance



II. Polyceramics and Polyceramic
Matrix Composites (PCMCs)



Window of Opportunity for
Polyceramic Matrix Composites

Low Cost Scaleable Very 
Tough Easy to Fabricate

OMCs

Very High Cost Not Scaleable Poor 
Toughness Difficult to Fabricate

CMCs
PCMCs

0 250 500 750 1000 1250 1500

Use Temperature (C)
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Thermal Condensation of Polysilazanes
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Thermal Condensation of Polysilazanes
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Comparison of Temperature Limits of Organic Matrices 
Titanium, and Condensed DI-200 Polysilazane

Material Actual Temperature Limit 
(°F)

Claimed Temperature Limit 
(°F)

Epoxies 250 350

Bismaliimides 350 450

Typical Polyamides 550 700

AFRB  4 Polyimide ~600

Titanium metal 700

DI 200 ~1800



Polysilazane / Quartz Fiber Composites

• High thermal stability (600 °C) and thermal shock resistance

• High Mechanical Strength and Toughness 

• Low, stable dielectric constant at high temperatures

• Suitable Material for Radomes & Antenna Windows



Typical PSZ / Quartz Fiber Composite 
Mechanical Properties
Material Quartz Fabric/ DI-200 Resin

Ultimate Tensile Strength (psi) 35,500 @ -35°F
39,000 @ RT;
19,500 @ 1000°F

Youngs Modulus (msi) 2.6 @ -35°F
2.6 @ RT
2.9 @ 1000°F

Compressive Stress (psi) at Maximum load 10.6 @ -35°F
9,200 @ RT
9.600 @ 1000°F

Flexture Strength (psi) 26,000

Flexture at Modulus (msi) 3.32

Shear Strength Isopecscu, psi 2,700 @ RT
4,270 @ 1000°F

Thermal Conductivity
BTU-in/hr-sq.ft.-°F

2.8



Electrical Properties: PSZ / Quartz Fiber Composite

Electrical Property Value Stability

Dielectric Constant
(25 °C to 1,100 °C)

3.0 Stable vs. Temperature

Dielectric Constant
(0.03 GHz to 30 GHz)

3.0 Stable vs. Frequency

Loss Tangent
(25 °C to 1,100 °C)

0.003 Stable vs. Temperature

Loss Tangent
(0.03 GHz to 30 GHz)

0.003 Stable vs. Frequency



III. Organic / Inorganic Hybrid Materials



Organic / Inorganic Copolymers
from Polysilazanes

• Urethanes

• Epoxies

• Cyanate Esters

• Phenolics



Benefits of Organic / Inorganic Copolymers 

Exceptional
Thermal Stability

High Char

Excellent Adhesion
(Fibers, Fillers, etc..)



Urethane Copolymer Formation
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Urethane Copolymer
TGA Trace



Urethane Copolymer 
Composite Characteristics

• High Durability

• Non-Burning

• No Smoke Generation

• UV Stable

• Cost Effective (High Filler Loading)



Urethane Copolymer / Glass Fiber Composites
HDI Trimer / Polysilazane (7 glass plies in 0/90 lay-up)

Property E-Glass S-Glass

Tensile Strength, MPa 384 584

Tensile Modulus, Gpa 20.3 28.3

Strain to Failure, % 2.1 2.1

Flexural Strength, MPa 402 572



Urethane Copolymer Trackside Warning Tile
Property Nominal Value Test Method Result

Accelerated 
Weathering

No deterioration
(200 hours)

ASTM G-23 None

Chemical
Resistance

No Dissolution ASTM D-1308 None

Flexural Strength 15,000 psi ASTM C-293 26,000

Freeze/Thaw/Heat
At

5 (cycles)

No disintegration ASTM C-1026 None

Impact 
Resistance

No Cracks @
ambient

Temperature

ASTM D-3029 No Cracks

Flame Spread 
Index

<25 (Class A) ASTM E-84 20

Smoke Generated <450 (Class A) ASTM E-84 105

Wear Resistance <0.03 inches ASTM D-658 0.0058 inches



Trackside Warning Tile

Grand Central Station, New York, New York



Epoxy Copolymer Formation
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Carbon Fiber / Epoxy Hybrid Composite Properties
Identical # of Piles and Layup

Fiber Fiber Vol. Epoxy Matrix
(published values)

Hybrid Resin Matrix

AS4 / 12K 62% 225 ksi (1550 MPa) 192 ksi (1323 Mpa)

AS4 / 3K 62% 225 ksi (1550 MPa) 167 ksi (1151 Mpa)

AS4 / 8H 62% 120 ksi (827 MPa) 94 ksi (648 Mpa)

Tensile Strength



Epoxy Hybrid TGA Trace



Carbon Fiber / Epoxy Hybrid
Composite Properties

AS4 / 3K Hybrid Composite

.20°C (Room 
Temperature)

300°C 400°C 600°C

Tensile Strength 138 ksi 123 ksi 107 ksi 35 ksi



Organic / Inorganic Hybrid Clear Coats 
also in Commercialization

•Low Surface Energy

•Anti-Fouling

•Anti-Graffiti



Anti-Graffiti Coatings
• Clear coat for painted

surfaces, metals Interior and
exterior application

• Reduces adhesion of a wide range 
of paints and markers

• Only thin layers necessary

(ca. 10 µm)  

• Highly transparent

• Very durable (light and weather 
resistant)



Polysilazane Façade Coating for Anti-Fouling /
Anti-Graffiti

Eric Owen Moss Arts Tower / Los Angeles, CA



Summary
• Preceramic Polymers provide a versatile tool in the manufacture of ceramic

objects that cannot be made using conventional ceramic forming
techniques.

• Preceramic Polymers can be used in the preparation of ceramic coatings,
monoliths, and composites.

• Preceramic Polymers can be useful as high temperature-stable materials in-
and-of-themselves without full conversion to ceramic.

• Preceramic polymers can be used as co-reactants with organic polymers to 
provide for organic / inorganic hybrid materials that have enhanced thermal
stabilities versus their wholly organic counterparts and which can
demonstrate non-burning characteristics or low surface energies.
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